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Abstract 

The equations of motion for linear structures considered as continuous systems are generally 

non-homogeneous linear partial differential equations. Their solution is functions of time and 

spatial variables. The traditional analysis approach involves solving the eigenvalue problem. 

This yields the eigenvalues and eigenvectors, which can be used to construct the general solu-

tion of the differential equations. This approach has been widely used in mechanics and has 

proven effective in solving many engineering problems. In recent years, machine learning meth-

ods, particularly neural networks, have also been used to solve differential equations. These 

methods can learn the equation's solution directly from data without the need for explicit ana-

lytical expressions. This makes them particularly useful for complex problems that may need 

analytical solutions or for problems where obtaining analytical solutions takes time and effort. 

This paper compares the performance of these two approaches for a specific problem of the 

vibration of the Euler-Bernoulli beam on a Winkler-type elastic foundation subjected to a mov-

ing load. The machine learning approach learns the solution directly from data generated by 

solving the differential equation using a Neural Architecture Search (NAS) with Automatic Dif-

ferentiation (AD) method (NASAD). The paper provides insights into the relative strengths and 

weaknesses of each method and highlights the potential of machine learning to solve complex 

problems with high accuracy and low computational sources. 

Keywords: Neural Architecture Search; Automatic differentiation; Dynamic response; Beams 

on elastic foundation; Eigenvalue problem; Forced vibrations 
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1 INTRODUCTION 

The solution of the equation of motion of structures is one of the most important issues in 

earthquake engineering as it is directly related to the determination of their seismic response 

[1]. The equations governing the motion are generally non-homogeneous linear partial differ-

ential equations with respect to time and spatial variables. This is due to the fact that structures 

are in effect “continuous systems” with infinite degrees of freedom [2]. Solving equations of 

this type is particularly difficult or even impossible as structures consist of many more than one 

structural element. Thus, for the solution of the equations of dynamic equilibrium the consid-

eration of structures as discrete systems has prevailed [1]. In this case the structures are trans-

formed into systems with a finite number of degrees of freedom by means of inertial and elastic 

discretization (“discrete systems”). Thus, in combination with the application of the finite ele-

ment method, the solution of the dynamic problem is achieved by solving systems of second-

order linear differential equations for which there is a large number of implementations availa-

ble in computer code (see e.g. [3]). Despite the fact that nowadays the Finite Element Method 

is almost exclusively used for solving dynamic problems of structures (see e.g. [4,5,6]), the 

study of the solution in terms of “continuous systems” remains particularly useful for applica-

tions to simple structural systems such as elastically supported beams which can also be used 

for example to model pile foundation systems (see e.g. [7,8,9]).  

The difficulty of solving the dynamic problem by considering structures as “continuous sys-

tems” (as described above) leads to the consideration of the possible feasibility of solving it 

using methods that fall within the scientific field of machine learning. This paper proposes a 

method to learn the solution directly from data generated by solving the differential equation 

using a neural architecture search with automatic differentiation. Automatic Differentiation 

(AD) [10] is a technique used to compute the derivatives of a function concerning its inputs and 

is a crucial component of modern neural network training algorithms [11]. On the other hand, 

the Neural Architecture Search (NAS) [12] is a technique used in machine learning to design 

and optimize neural network architectures automatically [13]. In traditional machine learning 

approaches, the architecture of a neural network is often manually designed by a human expert, 

which can be a time-consuming and challenging process. NAS automates this process to search 

for the optimal neural network architecture based on predefined constraints or objectives. The 

process involves exploring a large search space of possible network architectures and evaluat-

ing their performance on a given task. To apply the Neural Architecture Search with Automatic 

Differentiation (NASAD) method as a technique for the solution of differential equations, we 

formulate the problem as an optimization problem, where the goal is to minimize the error 

between the predicted and actual solution of the differential equation. The neural network ar-

chitecture is designed to take the initial conditions and any relevant differential equation pa-

rameters as inputs and output the solution at a given time. The optimization problem is solved 

using gradient descent, where the error gradient with respect to the network weights is com-

puted using automatic differentiation [14]. This allows the network weights to be updated to 

minimize the error between the predicted and actual solution of the differential equation. 

The proposed method is a pilot application to optimal solution of dynamic problems of struc-

tures considered as continuous systems. To this end, the solution of the dynamic problem of the 

Euler-Bernoulli beam supported on a Winkler-type elastic foundation, which has been studied 

in a large number of published research papers using various classical methods of structural 

dynamics (see e.g. [15,16,17,18]), has been chosen at this stage of the investigation. More spe-

cifically, in this paper the problem of vibration of elastically supported Euler-Bernoulli beams 

due to a moving concentrated force (see e.g. [19,20,21]) is studied. The problem is solved both 

by the classical method of separation of variables and application of the eigenproblem solution 
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[1,2,22] and by NASAD method. The results of the solutions by both methods prove that the 

NASAD method can approach the results obtained by the classical solution method to an ex-

tremely high degree. This conclusion sets the stage for further investigation of the application 

of machine learning methods to the solution of dynamic equilibrium problems of more complex 

structures. 

 

2 THE SOLUTION OF THE EQUATION OF MOTION FOR EULER-BERNOULLI 

BEAMS ON WINKLER TYPE ELASTIC FOUNDATION 

2.1. The solution procedure based on the eigenvalue analysis approach 

The governing equation of motion for Euler-Bernoulli beams on a Winkler type elastic foun-

dation (ignoring the damping) in the framework of the first order theory is [23]: 

4 2

4 2

w w
EI ρA k w p(x,t)

x t

 
 +  +  =
 

 (1) 

Where: 

w(x,t) is the lateral deflection of cross-sectional centroid axis (m), 

EI is the flexural stiffness of beam (kNm2), 

ρ is the mass density (mass per unit of area, (kg/m2)), 

A is the cross-sectional area in (m2), 

k is the modulus the of sub-grade reaction (kN/m2), 

p(x,t) is the external dynamic load (kN/m) 

If the external dynamic load p(x,t) is equal to zero then the equation (1) governs the free 

vibration of a beam without damping. In this case the vibration is due to the initial conditions 

which regard the imposed displacements and velocities at t=0. 

A conventional procedure for the solution of (1) (with or without external dynamic load) is 

the mode superposition method [1,2]. In the framework of this method the eigenmodes of the 

vibrating structural system must be calculated at first. To this end, the eigenvalue problem must 

be solved. This problem is governed by Eq. (1) ignoring the external load (i.e. p(x,t)=0). The 

solution is based on the hypothesis that the unknown function of lateral deflection w(x,t) can 

be expressed as a product of an unknown function X(x) of the spatial variable x and an also 

unknown function f(t) of time t (method of separation of variables or Fourier method). Thus: 

( ) ( ) ( )w x,t X x f t=   (2) 

Substituting the Eq. (2) in Eq. (1) and after the appropriate transformations the two following 

differential equations are extracted: 

( ) ( )
( )

( )
24 4

2

4 4

ω ρA kd X d X
EI k ω ρA X x 0 X x 0

dx dx EI

 −
 + −   =  −  =  (3a) 

( )
2

2

2

d f
ω f t 0

dt
+  =  (3b) 

Where X(x) and ω are an eigenvector and its corresponding eigenfrequency. 

The Eq. (3a) is a linear homogeneous differential equation with constant coefficients which 

can be solved using four boundary conditions that are depended on the types of the supports of 

the beam (for a simply supported beam: Fig. 1). The general form of the solution of (3a) is: 
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( ) ( ) ( ) ( )
2

PL PL 4
1 2 3 4

ω ρA k
X x C e C e C cos PL C sin PL where P P ω

EI

−  −
=  +  +  +  = =  (4) 

 

 
Figure 1: Definition and solution of the eigenvalue problem of a simply supported Euler beam on elastic foundation 

The calculation of the constants of integration C1-C4 can be achieved using the four boundary 

conditions which form a homogeneous system with four equations. The non-trivial solution of 

this system arises when the determinant of the matrix D of the coefficients C1-C4 (Fig. 1) is set 

to zero: 

( )( )det D P ω 0 =   (5) 

The Eq. (5) is the characteristic equation of the eigenvalue problem. It can be proved that for 

the simply supported beam of Fig. 1 the characteristic equation is: 

( )( ) ( )
2 4 4

4
i 4

ω ρA k 1 i π EI
det D P ω 0 sin L 0 ω k i 1,2,...

EI ρA L

     −  
   =   =  =  + =           

 (6) 

This trigonometric equation has infinite solutions which are the eigenvalues ωi of the vibrat-

ing system. For each one of the eigenvalues ωi the Eq. (4) leads to an eigenfunction Xi(x). For 

the simply supported beam of Fig. 1 the form of the eigenfunctions is: 

( ) ( ) ( )
2

i4
i i i i

ω ρA k
X x sin Px with P P ω

EI

 −
= = =  (7) 

Once the eigenfrequencies and the corresponding eigenfunctions are known, the solution of 

(1) for the undamped free vibration (p(x,t)=0) can be expressed in a infinite series of terms: 

 ( ) ( ) ( )i i

i 1

w x,t X x q t


=

=   (8) 

Thus, the solution of Eq. (1) (for p(x,t)=0) is based on the complete set of the eigenmodes 

of the studied beam and on the “main coordinates” qi(t). In other words, the solution (8) i.e. the 

unknown function of the lateral deflection w(x,t) is expressed by means of the eigenvectors. 

The participation of each one of the eigenvectors to the solution is represented by the functions 

qi(t) as it is shown in Fig. 2.  
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Figure 2: The rationale of the modal superposition method 

In many cases an acceptable solution (as regards the precision) is reachable considering only 

a finite number of terms in (8).  

Let’s now consider the case of the vibration of a simply supported beam on a Winkler-type 

elastic foundation due to a moving transverse load Pe which is moved on the beam with velocity 

equal to c (Fig. 3). 

 
Figure 3: The vibration of a simply supported beam on a Winkler-type elastic foundation due to a moving 

transverse load 

For this case the external dynamic load p(x,t) in the Eq. 1 is expressed as follows: 

( )ep(x,t) P δ x c t=  −   (9) 

Where δ is the Dirac function, whereas c is the velocity (m/sec) of the external load Pe. 

The substitution of Eq. (8) to Eq. (1) leads to the following Equation: 

( )
( ) ( )

( ) ( ) ( ) ( )
4 2

i i

i i i i e4 2
i 1 i 1 i 1

d X x d q t
q t EI ρA X x k q t X x P δ x c t

dx dt

  

= = =

   
  +   +   =  −       

   
    (10) 

Then, an infinite sequence of differential equations is created by means of manipulation of 

(10) with each one of the infinite eigenmodes Xk(x) and the integration along the length L of 

the beam.  

( )
L L L L4 2

i i
i k i k i i k k e4 2

i 1 i 1 i 10 0 0 0

d X d q
q EI X dx ρA X X dx k q X X dx X P δ x c t dx

dx dt

  

= = =

     
    +     +    =   −       

     
       (11) 

Using the orthogonality conditions: 

( )

L L4
2i

k i i ik i k i ik4

0 0
L

i2

i i ik

i0

d X
EI X dx ω ρA N δ and ρA X X dx ρA N δ

dx

sin 2 P LL
where: N X dx and δ Kronecker delta

2 4 P

   =       =  

 
=  = − =



 



 (12) 

the infinite number of equations take the following general form: 

( )
( ) ( )

2 2
i ei i i

i i i i2

i i

d q t Pω M k N
q t sin P c t where M ρA N

dt M M

    + 
+  =    =    
   

 (13) 

Using as initial conditions for the above equation:  

x
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= + +
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3
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( )
( )i

i

dq t
q t 0 and 0

dt
= =  (14) 

the solution of (13) is: 

( )
( )

( )
( )

2

e i i
i i2 2 2 2

i i i

2 P P c ω ρA k
q t sin P c t sin t

ρAL k ρA ω c P ω k ρA

     +
 =    −   

     +  −  +     

 (15) 

Combining the Eqs. (8), (15) and considering the Eq. (9) the form of the solution of Eq. (1) is: 

( ) ( )
( )

( )
( )

2

e i i
i i2 2 2 2

i 1 i i i

2 P P c ω ρA k
w x,t X x sin P c t sin t

ρAL k ρA ω c P ω k ρA



=

     +
 =     −   

     +  −  +     

  (16) 

2.2. The solution procedure based on the NASAD approach 

In this paper, based on the meta-learning logic [24], we build a system for identifying the 

optimal hyperparameters of a neural network model using the NAS technique [25]. It is a tech-

nique to automate the design of artificial neural networks by searching for optimal hyperparam-

eters, minimizing the number of operations required while providing an explicit methodology 

for knowledge discovery in unknown environments. Typical hyperparameters the technique in 

question can optimize include the optimization algorithms (SGD, Adam, etc.), learning rate, 

regularization, etc. Essentially, it enables the creation of optimal learning techniques for high-

performance success with minimal up-front effort and minimal expertise. 

In particular, and given a neural architecture search space 𝐹, where the input data 𝐷 is di-

vided into Dtrain and Dval and the cost function Cost(·)  (e.g., accuracy, mean squared error, etc.), 

the goal is to find an optimal neural network f* ∈ F that can achieve the lowest cost on the 

dataset D. Finding the optimal neural network f* is equivalent to [12,24,26]: 

( )( )argmin ,f F valf*= Cost f θ* D  (17) 

( )( )argmin L ,θ trainθ*= f θ D  (18) 

Where θ* is the learning parameter of the network.  

The mode of operation of the proposed NAS strategy is enhanced by techniques based on 

how nature works and, in particular, finding analogies between techniques where instinct as a 

genetic trait overrides training. For example, some species in biology possess predatory behav-

iors from birth, allowing them to perform complex motor and sensory tasks without learning, 

which in most cases are fully sufficient for the species' survival. In contrast, in training artificial 

neurons it is usually chosen to perform a task, an architecture that is considered suitable for 

modeling the task; the search mainly focuses on finding the weight parameters using a learning 

algorithm. Inspired by social behaviors evolved in nature, neural networks can be developed 

with architectures that can perform a given task even when the weight parameters are random-

ized. Hence, they can perform well without training, and their performance can be further max-

imized through training. 

Thus, the proposed architecture is characterized by a stacked hierarchy of layers, where at 

each time step t, the first recurrent layer is fed by the external input u(t). In contrast, each suc-

cessive layer is fed by the output of the previous one in the stack. Although their architectural 

organization allows for general flexibility in the size of each layer, to avoid complexity, we 

consider a hierarchical setup with recurrent layers NL, each containing the same number of units 
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NR. Moreover, we use x(l)(t) ∈ 𝑅𝑁𝑅  to denote the state of layer 𝑙 at time 𝑡. Omitting bias terms, 

the state transition function of the first layer is defined as follows [27,28]: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1
1 1 tanh 1= −  − +   +  −in

ˆx t α x t α W u t W x t  (19) 

For each layer l>1: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1
1 1 tanh 1

−
= −  − +   +  −

l l l l l l l lˆx t α x t α W u t W x t  (20) 

where 𝑊𝑖𝑛 ∈ 𝑅𝑁𝑅×𝑁𝑈  is the input weight matrix, �̂�(𝑙)∈ 𝑅𝑁𝑅×𝑁𝑅 is the recurrence weight matrix 

for level l, 𝑊(𝑙)∈ 𝑅𝑁𝑅×𝑁𝑅  is the matrix concerning the connection weights between levels from 

level 𝑙-1 to level l, 𝑎(𝑙) is the leaky parameter at level 𝑙. Finally, tanh represents the elementary 

application of the hyperbolic tangent. 

Random weights improve the generalization properties of the solution of an original linear 

system because they produce nearly orthogonal (weakly correlated) features. Given that the 

output of the linear system is always correlated with the input data if the range of solution 

weights is limited, orthogonal inputs provide a wider range of solutions than those supported 

by weights. Also, small variations in weights allow the system to become more stable and noise 

tolerant, as input errors will not be amplified at the output of a linear system with little correla-

tion between input and output weights. Thus, the random ranking of weights, which produces 

weakly correlated features in the hidden layer, allows us a satisfactory solution and good gen-

eralization performance. In general, it is an evolutionary neural network development strategy 

that can perform a specialized task independently of the connection weights, equivalent to the 

absence of training. The logic of not using training involves a basic exploration in the search 

for neural network architectures with specific biases that can potentially perform categorization 

on the given problem, even when using random weights. By exploring such architectures, it is 

possible to explore agents that can perform well in their interaction environment without the 

need to be trained. An engineering system can create robust self-determining systems capable 

of coping with complex situations. 

To evaluate and validate the final model capability resulting from applying the proposed 

methodology, we use the [29,30,31] constant, which allows us to study the behavior of the 

scattering transformation when a set of similar inputs is introduced as input. This transformation 

can approximate the operation of a simple neural network architecture by allowing the study of 

how neural networks succeed in solving difficult problems in which multiscale feature extrac-

tion is required. At the same time, the properties of the transformation in question explain how 

a neural network can achieve invariance to input displacement and small input deformations, 

such as in cases of elastic deformation. In particular, new inputs are generated when a very 

small variation 𝑝 is added to the input h, so that we obtain the new input ℎ + 𝑝, which, with an 

appropriately chosen input function 𝑝, is ordered differently from the original input such that 

[32,33]: 

 ( )  ( )+ − S m h p S m h   p  (21) 

Thus, it follows that the output for a new variable input does not differ from the original 

input by more than ‖𝑝‖. So, if the transformation follows the constraints of the scattering trans-

formation: 

( )( ) ( )
=

 
2N 2 2

2

i ,j ω ω
i 1

C
ˆ ˆψ ,    φ C    

N
 (22) 
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For 𝐶 ∊ 𝑅: 

 ( )  ( ) 1++ −  mS m h p S m h   C p  (23) 

This means that the constant C determines how vulnerable the transformation is to changes 

in the input by p. Therefore, as the Lipschitz constant determines the ability of the classifier to 

cope with new inputs, in the considered research, we propose to use it to detect how this con-

stant evolves when searching for hyperparameters of a neural network. In particular, suppose 

that the input of a convolutional neural network is in the form of a vector, with  𝑓(𝑥𝑖𝑛, 𝑐) the 

network output for the category 𝑐 with the vector 𝑥𝑖𝑛 as input. Suppose two different input vec-

tors 𝑦𝑖𝑛, ℎ𝑖𝑛 and the corresponding outputs 𝑓(𝑦𝑖𝑛, 𝑐), 𝑓(ℎ𝑖𝑛, 𝑐)  so as 𝑦𝑖𝑘, ℎ𝑖𝑘 the 𝑘-th level out-

puts in the channel i for each of the two inputs. The convolutional neural network consists of 

convolution layers, pooling layers, and ReLU activation functions. So, for each of the three 

kinds of layers, we have:  

1) Let layer 𝑘 is a convolution layer. As we express the inputs as one-dimensional vectors, the 

convolution with a two-dimensional kernel 𝜓𝑖𝑗𝑘, which connects the i channel of the output 

to the 𝑗 channel of the input, is implemented by multiplying the input vector by a matrix 𝐴𝑖𝑗𝑘 

generated by the original kernel, such that [30,34]: 

( )−
=

=  =
kN

ik ijk kj k 1
j 1

x A x i 1,2,....,M  (24) 

where 𝑁𝑘 is the number of channels of the input and 𝑀𝑘 is the number of channels of the 

output of the convolutional level 𝑘. Thus: 

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

( ) ( )

− − − −
= = =

− − − −
= =

− −
=

− =  −  =  −

  −   −

 −   −

  

 



k k k

k k

k

N N N

ik ik ijk ijk ijkj k 1 j k 1 j k 1 j k 12
j 1 j 1 j 12 2

N N

ijk ijkj k 1 j k 1 j k 1 j k 1
22j 1 j 1

N

ik ik ijk j k 1 j k 12 2
j 1

y h A y A h A y h

A y h A y h

y h A y h

 (25) 

Suppose that 𝑘 is a Pooling plane in which no overlapping regions exist, then: 

( ) ( )− −
−  −ik ik j k 1 j k 12 2

y h y h  (26) 

2) Assuming that k is ReLU, then the output vector has the form: 

( ) ( ) ( )=  
T

ik ik ik ikx x 1 x 2 .... x m  (27) 

The output 𝑥𝑖𝑘(𝑡) defined as: 

( ) ( ) ( )( )−
=ik i k 1

x t max 0,x t  (28) 

Thus 

 

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

− −
=

− − − −
=

− −

− = −

 − = −  −

 −





m 2
2

ik ik i k 1 i k 12
t 1

m 2 2

jk jkj k 1 j k 1 j k 1 j k 1 22
t 1

j k 1 j k 1
2

y h max 0,y t max 0,h t

y t h t y h y h

y h

 (29) 
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where |max(0, 𝛼) − max(0, 𝛽)| ≤ |𝛼 − 𝛽|. 

Using the above equations, a constant 𝐿𝑖𝑘  can be calculated for which it holds that: 

−   −jk jk ik 10 10 22
y h L y h  (30) 

We define the constant recursively as 𝐿𝑖𝑘 = 1, so that for each type of level it holds:  

• Convolution layer: ( )−
=

= 
kN

ik ijk j k 12
j 1

L A L  

• Pooling layer: ( )−
=ik i k 1

L L  

• ReLU function: ( )−
=ik i k 1

L L  

Therefore, if the network has 𝑝 levels we can find the Lipschitz constant that satisfies the 

relation: 

( ) ( )−   −in in cp in in 22
f y ,c f h ,c L y h  (31) 

Having developed the method for finding a Lipschitz constant for the network, we study how 

it evolves when finding the appropriate hyperparameters of a neural network in solving the 

given problem. 

AD is a technique used to compute derivatives of functions. It is commonly used in machine 

learning, optimization, and scientific computing. The basic idea of AD is to decompose a func-

tion into a sequence of elementary operations, such as addition, multiplication, and exponenti-

ation, and then compute the function's derivative by applying the chain rule of calculus to each 

operation. This process can be done efficiently using computer algorithms without explicitly 

computing the function's derivative. 

There are two main approaches to AD: forward mode and reverse mode. In forward mode, 

the derivatives of all intermediate variables are computed simultaneously as the function is 

evaluated. Specifically, forward accumulation computes the recursive relation [10,14]: 

−

−

  
=  =

  

i i i 1

i 1

w w w
with w y

x w x
 (32) 

In contrast, in reverse mode, the derivatives of the output variable are computed first and 

then propagated backward through the sequence of operations. Specifically, reverse accumula-

tion computes the recursive relation: 

+

+
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 (33) 

AD has several advantages over traditional methods of computing derivatives, such as finite 

differences and symbolic differentiation. It is more accurate and efficient, particularly for func-

tions with a large number of variables or complex compositions of functions. It can also handle 

functions with discontinuities, such as piecewise-defined functions, more easily than other 

methods. 

In this study, differential equations are solved using a neural search architecture with auto-

matic differentiation that is trained to understand the behavior of the differential equation. The 

loss function for the network's training is the differential equation itself, which is then automat-

ically differentiated to minimize. Below is a summary of the architecture at a high level: 
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1. The beginning and boundary conditions, as well as the differential equation to be solved, 

were defined. 

2. A collection of input-output pairs was created from the differential equation, where the in-

puts represent the independent variables and the outputs represent the dependent variables. 

3. A neural network was trained to forecast the values of the output given the values of the 

input. 

4. The gradients of the loss function were computed with respect to the network parameters 

using automatic differentiation. 

5. An optimizer was used to make network parameter updates that would reduce loss. 

By minimizing the error between the predicted and actual solutions of the differential equa-

tion, the neural network can learn the system's underlying behavior and provide accurate solu-

tions for different inputs. This approach can be particularly useful for problems where analytical 

solutions are not readily available or where the analytical solution is too complex to be obtained 

or is computationally expensive. 

3 NUMERICAL EXAMPLE 

This section presents the results of the comparative solution of the two methods presented 

in the previous section using the numerical example depicted in the Fig. 4. 

 
Figure 4: The values of the parameters of the studied numerical example 

As far as the solution by the classical method of solving the differential equation of the 

problem (Eq. (1)) is concerned, it should be noted that only the first term in the equation (Eq. 

(16)) was used as the other terms turned out to have negligible influence. Thus, the solution of 

the problem by the classical method is obtained for the numerical example by the Eq. (34): 

( ) ( )
( )

( )
( )

2

e 1 1
1 12 2 2 2

1 1 1

2 P P c ω ρA k
w x,t X x sin P c t sin t

ρAL k ρA ω c P ω k ρA

     +
 =     −   

     +  −  +     

 (34) 

The solution of the eigenproblem resulted in: 

( ) ( )1 1 1ω 1.5964rad/sec P 0.7854 X x sin 0.7854 x= → = → =   (35) 

As a parameter for comparing the results, the variation of the lateral deflection in the middle 

of the beam w(L/2) as a function of time (t) was used. This variation is depicted in Fig. 5. It 

should be stressed that the solution resulting from Eq. (34) is valid for the time interval from 

t=0 sec to t=L/c=4.00/1.00=4 sec. For t>4.00 sec the moving load is outside the beam and the 

vibration becomes free. For this reason, the diagram in Fig. 5 has a time range of [0.00sec, 

4.00sec]. 
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Figure 5: Time variation of the lateral deflection in the middle of the beam 

Table 1 shows the results of the NASAD approach for predicting the displacement of the 

Euler-Bernoulli beam on an elastic foundation subjected to a moving load for 14 different time 

inputs. The table includes the time, the displacement calculated using the classical method and 

the displacement predicted by the NASAD approach. 

ID Time (sec) Displacement (cm) – Classical method Displacement (cm) - Predicted 

1 0.3 0.004605411 0.004461994 

2 0.63 0.040570695 0.039418149 

3 0.65 0.044371532 0.042154818 

4 0.66 0.046351195 0.0485189 

5 0.67 0.048384207 0.051071586 

6 2.15 0.760442817 0.758433355 

7 2.44 0.85035003 0.849373095 

8 2.6 0.865912826 0.865749313 

9 2.86 0.830896232 0.832665859 

10 3.27 0.621689162 0.624985816 

11 3.46 0.469491684 0.474114383 

12 3.6 0.340983069 0.350375689 

13 3.77 0.172549928 0.177670435 

14 3.95 -0.012383849 -0.008466525 

Table 1: Comparative results extracted from the classical method and from the NASAD approach 

The NASAD approach provides accurate displacement predictions for different time inputs, 

with small differences between the predicted and the classically calculated values. 

 
Figure 6: Differences (%) of classically calculated and predicted values (NASAD) for the input times of Table 1 
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Figure 6 depicts the comparison of the analytically calculated vs predicted displacements in 

terms of Difference (%). This comparison provides a visual representation of the accuracy of 

the NASAD approach in predicting the displacement of the Euler-Bernoulli beam on an elastic 

foundation subjected to a moving load. The predicted displacement is very close to the analyt-

ically calculated one, and the differences between the two methods are negligible, indicating 

the good performance of the NASAD approach. By comparing the analytically calculated and 

predicted displacement on the graph, the reader can understand the accuracy of the NASAD 

approach in predicting the displacement for different time inputs.  

Training Set Mean Squared Error: 1.175e-06 

Test Set Mean Squared Error: 8.422e-06 

Mean Absolute Error: 0.00217 

Root Mean Squared Error: 0.0029 

Coefficient of Determination (R2): 0.999965 

Table 2: NASAD Performance Metrics 

Table 2 provides the performance metrics for the NASAD approach used in this study to 

solve the differential equation. The metrics [35] include the Mean Squared Error (MSE) for the 

training and test sets, the Mean Absolute Error (MAE), the Root Mean Squared Error (RMSE), 

and the Coefficient of Determination (R2). The training set MSE is 1.175e-06, indicating that 

the predicted values are very close to the actual values in the training set. The test set MSE is 

8.422e-06, which is slightly higher than the training set MSE, but still a relatively small value, 

indicating the model's good performance on unseen data. The MAE is 0.00217, which measures 

the average magnitude of the errors in the predictions. The RMSE is 0.0029, which measures 

the average magnitude of the errors in the predictions, with higher weight given to larger errors. 

These values suggest that the NASAD approach has low errors and provides accurate predic-

tions. Finally, the R2 value is 0.999965, which measures the model's goodness of fit. This value 

is very close to 1, indicating that the NASAD approach provides an excellent fit to the data, 

with only a small amount of unexplained variance. Overall, these performance metrics suggest 

that the NASAD approach effectively solves the differential equation and provides accurate 

predictions of the displacement of the Euler-Bernoulli beam on an elastic foundation subjected 

to a moving load. 

4 CONCLUSIONS 

The solution of dynamic problems of structures is a significant field of research in the context 

of earthquake engineering. The solution of these problems by considering structures as "con-

tinuous systems" is very difficult or even impossible, except for very simple problems of struc-

tural systems consisting of a single structural member. Thus, for the easy and sufficiently 

accurate solution of the dynamic problems of structures, extensive use is made of discrete sys-

tems obtained by elastic and inertial discretization. The discrete systems lead to reliable results 

using the finite element method. 

The present paper proposes a different approach to solving the dynamic problem of contin-

uous systems by applying machine learning methods and, more specifically, the NASAD 

method based on artificial neural networks and automatic differentiation. The paper aims to 

document that these methods lead accurately to the solution of the differential equations gov-

erning the dynamic equilibrium of continuous systems. To this end, both a classical solution 

method (method of separation of variables and the solution of the eigenproblem) and the 

NASAD method have been used to study the vibration of an Euler-Bernoulli beam resting on 
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an elastic Winkler-type foundation subjected to a moving concentrated load. The traditional 

modal analysis approach is a well-documented method in mechanics for solving differential 

equations, but it is computationally intensive, especially for large and complex structures. On 

the other hand, the proposed machine learning method offers an alternative high-accurate ap-

proach that learns the solution directly from the data, which can be particularly useful for prob-

lems where obtaining analytical solutions requires time and effort. The comparative results of 

the two approaches showed that the considered NASAD method can lead to almost identical 

results with the classical solution method. In the future, the research will focus on how the 

proposed machine learning approach solves more complex structural systems. 

Overall, this paper highlights the potential of machine learning methods in solving complex 

problems in engineering and mechanics and how they can complement traditional analytical 

methods. It's exciting to see how machine learning can advance our understanding and ability 

to solve complex problems in various fields. 
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