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Abstract 

A variety of different structures experience rocking motion when subjected to dynamic 

actions, making rocking dynamics a fundamental problem of earthquake engineering. 

Rocking motion presents peculiar dynamic characteristics, such as negative stiffness during 

pivoting and non-smooth phenomena during impacts. Hence, modelling of the rocking 

problem faces significant challenges. One of the most significant is related to the energy 

losses that occur during impacts, commonly represented by the coefficient of restitution. 

Despite the numerous theoretical attempts to accurately estimate the coefficient of restitution, 

it is apparent that experimental observations are essential in providing a direct insight into 

the complex and non-smooth phenomena of rocking motion. To this end, the present work 

conducts an extended experimental campaign on the free-rocking motion of limestone blocks. 

More specifically, a total of 36 blocks are tested, corresponding to 12 different geometrical 

aspect ratios. The free-rocking motion is thoroughly analysed, while attention is also given to 

three-dimensional effects. Finally, the coefficient of restitution is experimentally quantified 

and compared with both previous theoretical and experimental results gathered from the 

literature. 
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1 INTRODUCTION 

The dynamic behaviour of a block rocking freely on its base constitutes a fundamental, yet 

challenging, problem of nonlinear dynamics and earthquake engineering, as it reflects the 

basic dynamic response of a variety of structures, such as buildings [1,2], bridges [3–8], 

classical monuments [9,10], non-structural elements [11], statues [12,13] etc. In particular, 

with respect to masonry structures, rocking behaviour becomes evident when the façades 

experience out-of-plane deformations due to lack of sufficient (or preliminarily fractured) 

connections with the adjacent walls [14,15]. In fact, such a collapse mechanism has been 

observed to be the most decisive and recurrent type of failure for masonry buildings after 

actual seismic events [16,17]. 

In general, the dynamics of a rocking block differs from the classical single-degree-of-

freedom oscillator and present peculiar characteristics [18,19]. In essence, the rocking motion 

is composed of two phases: i) the pivoting over each corner, and ii) the impacts with the base 

when alternating the corners of pivoting. Firstly, the pivoting phase is smooth (although 

nonlinear due to the negative stiffness of the system), while impacts are non-smooth, 

impulsive and lead to energy losses. As a result, the pivoting phase is usually adequately 

described when using geometrically nonlinear models [20], while impacts are burdensome to 

model explicitly [21–23]. Therefore, impacts are commonly treated in a phenomenological 

sense by studying the time instants immediately before and after each impact, while 

considering the energy losses with the Coefficient of Restitution (CoR) [24]. 

Clearly, the CoR has a crucial role when modelling the rocking motion numerically, 

though its estimation is non-trivial. It may be estimated by using either theoretical 

assumptions or experimental observations [25]. In more detail, the first theoretical approach 

to compute the CoR was proposed by Housner [24], who assumed pure rocking motion (i.e. 

no sliding or bouncing), and computed the CoR using the conservation of angular momentum. 

Later, the research provided significant contributions in this theoretical framework by 

alleviating most assumptions [26–29]. Nevertheless, the general formulation of the problem 

appears to introduce undefined parameters that need to be experimentally or geometrically 

specified. On the contrary, experimental investigations of the CoR allow its direct 

quantification [30]. In this case, assumptions are omitted while the physical complexities of 

the problem are revealed. Indicatively, experimental investigations have shown the 

importance of bouncing [31], sliding [32], three-dimensional motion [33], the role of interface 

and material properties [34–37], and/or the influence of geometrical imperfections and 

irregularities [38]. Nevertheless, experimental studies are notably sparse, usually limited to 

few geometrical aspect ratios, while three-dimensional recording is often lacking. 

The objective of this study is to provide an experimental insight into the energy losses of 

rocking motion and investigate the impact of three-dimensional effects on the global rocking 

response. To this end, a total of 36 free-rocking tests are conducted and analysed using 36 

different limestone blocks of 12 different geometrical aspect ratios, i.e. height over width 

ratios. Attention is also given to the three-dimensional response of the rocking blocks, which 

is measured with a state-of-the-art contactless technique. Furthermore, the dependence of the 

CoR on the rocking amplitude and aspect ratio is presented and discussed. 

The paper is structured as follows: the present section (Section 1) introduces the research 

significance and objectives of the work. Section 2 presents the theoretical framework of 

rocking dynamics, while Section 3 describes the experimental campaign. Section 4 first 

provides a detailed discussion of the outcomes of a representative free-rocking test, which is 

followed by the illustration of the CoR results for all the 36 tests. Finally, Section 5 concludes 

the work by highlighting the main observations. 
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2 THEORETICAL ROCKING DYNAMICS 

Consider a block with height H  and width B  that experiences planar rocking motion on 

its base (Figure 1a). The rocking motion may be described using rigid body dynamics. Thus, 

the equation of motion writes [24]: 
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g

xx xx xx
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where xx  describes the rocking rotation,   is the critical slenderness angle of the block (i.e. 

 1tan /H B  ), p  is the frequency parameter of the block, defined as 0p mgR I , with 

m  representing the mass, 0I  the rotational moment of inertia with respect to the pivot points 

and R  the diagonal distance of the centre of mass to the pivot points, g  is the acceleration of 

gravity and gu  is the base (ground) acceleration. Finally, the signum   refers to the sign of 

the rocking angle xx  with the upper sign corresponding to clockwise and the bottom to 

counter-clockwise rotations. Note that Eq. (1) is non-linear and thus the period T  of rocking 

motion is amplitude dependent [24]: 
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where ,0xx  is the amplitude of the rocking angle xx . 

Furthermore, assuming pure rocking behaviour (i.e. no sliding and bouncing), the two 

energy components of rocking motion, i.e. the Potential POTENTIALE  and Kinetic KINETICE  

energies, compose the Total energy TOTALE that read respectively: 

  POTENTIAL cos cosxxE mgR         (3) 
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 TOTAL POTENTIAL KINETICE E E   (5) 

Equation (1) represents the smooth part of rocking motion, i.e. when pivoting, while non-

smooth impacts occur when the block changes pivot point, i.e. when 0xx  . Those impacts 

occur over finite, but extremely short, time periods and result in energy losses. An accurate 

description of the impacts is commonly omitted, in favour of a phenomenological treatment 

using the CoR [39]. More specifically, the post-impact angular velocity  
 is related to the 

pre-impact    using the CoR: e    . Assuming no bouncing or sliding, Housner [24] 

estimated the CoR using the conservation of angular momentum before and after impact, 

yielding: 
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Note that according to Housner’s theory [24], the CoR (Eq. (6)) depends solely upon the 

geometry of the block, and thus the material properties are assumed irrelevant to the overall 

damping of the system. 

3 FREE-ROCKING EXPERIMENTAL CAMPAIGN 

The free-rocking tests are performed on limestone parallelepiped blocks (Figure 1b) of 

density 2238   kg/m
3
 and elastic modulus 32.7   GPa [40]. All the blocks have common 

nominal dimensions in plan ( 50B   mm and 150L   mm, 3L B  ), while their height H  

spans from 200 mm to 750 mm with steps of 50 mm, resulting in 12 groups with aspect ratios 

H B  ranging from 4 to 15. More specifically, 3 different blocks for each of the 12 H B  

aspect ratios are investigated, yielding a total of 36 specimens. Due to material irregularities 

and geometrical imperfections, the blocks’ actual geometrical dimensions might slightly differ 

from the nominal ones. Such incongruity, especially if occurring at the edges [38], could 

cause an asymmetric response behaviour between the two rocking signs of rotation. In order 

to take into account such effects, the experimental parameters describing the actual properties 

of the system (i.e. p  and  ) are herein extracted distinctly for each sign of rotation by 

leveraging the relationship between the amplitude and the period of motion (Eq. (2)) [30]. 

Figure 1c schematically shows the main components of the free-rocking experimental 

setup. More specifically, it consists of a bottom block fixed on a rigid base, and a top block 

standing free on the former constitutes the structure under investigation. The free-rocking 

motion is activated in two steps. Firstly, an initial positive rotation xx  larger than the critical 

slenderness angle    is imposed on the block (Figure 1a). Secondly, a threaded rod, which is 

locally in contact with the top of the block, is screwed, triggering the initiation of free-rocking 

motion with an initial condition of almost zero angular velocity [25]. The free-rocking motion 

is recorded by a Digital Image Correlation (DIC) system. The DIC is a contactless optical 

technique that allows the recording of the displacement field over time, with the advantage of 

avoiding any physical interference that might affect the dynamics of the system. Four cameras 

record the motion of the two faces of the block in the yz  plane (Figure 1c), with a sampling 

frequency of 145 Hz. Figure 1b illustrates the preliminary preparation of the block surfaces, 

 

Figure 1: (a) Schematic view of the planar asymmetric rocking block, (b) limestone block with the speckle 

pattern used by the Digital Image Correlation (DIC) system, and (c) schematic 3D drawing of the free-rocking 

experimental setup. 
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which is characterised by a speckle pattern made of randomly distributed dots in greyscale 

and of uniform size (calibrated with respect to the camera's field of view). From each surface i 

and j shown in Figure 1c, the displacement time histories of two vertically aligned points (P1 

and P2) are extracted (Figure 1b). Assuming rigid body motion, the displacement over time of 

the four points allows the estimation of the three rotations over the x-x, y-y and z-z axes as 

follows. 

The rocking rotation over the x-x axis xx  is estimated as: 
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where ,i topy  and ,i bottomy  are the displacements in the y direction of the top and bottom points 

of the surface i , and dH  is their relative vertical distance. Similarly, xx  is calculated for the 

surface j , while the final xx  is the average of the rotations of the two surfaces. 

The rotation over the y-y axis yy  is estimated as: 
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where ,i topz  and ,j topz  are the displacements in z direction of the top points of surface i  and j

, respectively, whereas L  is the length of the block. Similarly, yy  is estimated for the bottom 

points, while the final yy  is the average of the top and bottom points. 

The rotation over the z-z axis zz  is estimated as: 
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where ,i topx  and ,j topx  are the displacements in x direction of the top points of surface i  and j , 

respectively. Similarly, zz  is evaluated using the bottom points, and the final zz  is estimated 

as the average of the top and bottom points. 

Finally, the energy loss during the free-rocking motion is quantified using the CoR. 

Experimentally, the CoR is preferably estimated using the energy balance of Eqs. (3-5), rather 

than directly using the ratio of angular velocities after and before each impact. More 

specifically, assuming that energy is preserved during the pivoting (i.e. smooth rocking) 

phase, the kinetic energy at impact (Eq. (4)) can be equated with the potential energy at the 

peak response of the corresponding half cycle (Eq. (3)), as they are alternatively nullified. 

This deliberate choice stems from two main reasons [25,30,35]: i) the DIC acquisition system 

directly measures displacements, which are consequently experimentally more reliable than 

velocities (which are computed as the gradient of displacements), and ii) instances of 

maximum rotations are captured with higher fidelity than instances of impacts, considering a 

constant sampling acquisition frequency of 145 Hz, and the high velocities of the system 

around impact. For the general case of asymmetric response, the results of each sign of 

rotation are preferably analysed. Therefore, the CoR is estimated as: 
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POTENTIAL, peak,i+2

E
e
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 (10) 

where POTENTIAL, peak,iE  and POTENTIAL, peak,i+2E  are the potential energies at time instances of peak 

responses i  and 2i  . In Eq. (10), the first square root derives from the squared angular 

velocity (Eq. (4)), while the second one is introduced since two impacts separate the peak 

responses i  and 2i  . 

4 RESULTS 

Figure 2 presents the response time history of a representative free-rocking test performed 

with a block of aspect ratio 5H B  . In detail, Figure 2a shows the rotational response over 

the x-x axis xx , which constitutes the preeminent rocking response. xx  starts from an initial 

rotation equal to the critical slenderness angle, while the end of the motion is assumed to 

occur when an uncertainty threshold is reached, displayed in Figure 2 with a dashed line. Such 

threshold aims to delineate the boundary of reliable acquired response and it is defined 

 
Figure 2: Response time histories in terms of (a) rotation over the x-x axis, (b) absolute rotation over the x-x 

axis, (c) angular velocity and angular acceleration over the x-x axis, (d) potential, kinetic and total energies, and 

(e) rotation over the x-x, y-y, and z-z axes. 
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assuming the ratio between the uncertainty value, recorded by the DIC system, and the 

amplitude of the rotation xx  to be less than 10%. Figure 2b plots the absolute value of the 

rocking angle xx , where a modest asymmetric response can be observed. This phenomenon 

may be attributed to one or a combination of several factors, such as the presence of irregular 

contact interfaces, geometrical defects, a non-centred centre of mass, inclination of the bottom 

block etc. Figure 2c reports the angular velocity xx  and angular acceleration xx  response 

time histories, obtained from the first and second numerical derivatives of the rotation xx , 

respectively. The angular velocity xx  shows a rather linear trend, which gradually decreases 

its amplitude over time. Its value becomes zero when the rotation xx  becomes maximum, 

while its maximum value occurs during impact. The angular acceleration xx  response is 

approximately constant during the pivoting (smooth rocking) phase, except for an internal 

oscillation caused by the cumulative noise introduced by the double derivatives, while it 

changes its sign suddenly at each impact. Figure 2d shows the experimentally measured 

energy balance of rocking motion (Eqs (3-5)). For each cycle, the xx  amplitude peaks 

correspond to a maximum potential energy and zero kinetic energy, with the latter reaching its 

maximum during impact. Overall, the total energy reduces with a stepwise fashion, i.e. being 

constant during the pivoting and experiencing abrupt reductions during impacts, thus being 

perfectly in line with the theoretical rocking dynamics [24]. Importantly, as the total energy 

remains constant during the pivoting (smooth rocking) phase, it appears reasonable to 

compute the CoR using the potential energy as per Eq. (10). Finally, Figure 2e depicts the 

rotations of the block in all three axes, x-x, y-y and z-z, where it is clearly shown that the xx  

is the main component of motion, while yy  and zz  present negligible values. 

Figure 3 illustrates with dots the experimental maximum amplitude xx  of each half cycle 

versus the corresponding period for the representative test of Figure 2, separately for positive 

and negative oscillations. Note that the first half cycle is omitted since it might include small 

interferences triggered by the screwing device. The experimental parameters p  and   are 

estimated as the best fit resulting from the minimisation of the error between the amplitude-

period law (Eq. (2)) and the experimental data. The outcomes of the fitted p  and   

parameters are shown in Table 1 and plotted in Figure 3, together with the values for nominal 

 
Figure 3: Period-amplitude dependency: experimental versus nominal geometry. 
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(i.e. ideal) geometry. Table 1 indicates that the experimentally computed frequency parameter 

p  perfectly resembles its nominal value for both signs of rotation, with a maximum 

difference of 0.02 % for the positive sign, while the slenderness angle   shows a minor 

difference of 5.5 % and 0.3 % for the positive and negative signs, respectively. Overall, the 

experimental period-amplitude data appears to follow closely the form of Eq. (2) and 

indicates a small asymmetry of the block between its two signs of rotation. 

Figure 4a illustrates the experimentally estimated CoR values versus the maximum 

angular velocity xx  of each corresponding cycle, for the representative test previously 

presented. Note that Figure 5a shows the evolution of the test starting from the right side of 

the graph and evolves towards the left side, following the reduction of the angular velocity. 

Moreover, Figure 4a plots the CoR given by Eq. (6), which is based on the assumption of 

conservation of angular momentum and is constant throughout the response time history. 

However, Figure 4a shows a non-constant trend of the experimental CoR that rather presents a 

gradual decrease over time with a scattered distribution at the end of the response. 

Nevertheless, the experimental CoR does not differ significantly from the theoretical CoR of 

Eq. (6). Finally, Figure 4b plots the experimental CoR values coming from all the 36 free-

rocking tests performed herein. In addition, Figure 4b collects the experimentally measured 

CoR values found in the literature [20,26,30,31,34,36,41–46], together with the theoretical 

CoR computed using Eq. (6). Overall, Figure 4b shows that the 36 free-rocking tests follow 

the theoretical prediction of Eq. (6) up to an aspect ratio H B  of 12, while for higher aspect 

ratios the experimental outcomes indicate a smaller CoR. This discrepancy probably arises 

Table 1: Nominal and experimental parameters   and p . 

   [rad] diff. [%] p  [Hz] diff [%] 

Nominal 0.197 - 7.597 - 

Experimental positive xx  0.187 5.5 7.595 0.0 

Experimental negative xx  0.197 0.3 7.597 0.0 

 
Figure 4: (a) Experimental versus Housner’s theoretical CoR values for a representative free-rocking test, and 

(b) comparison of the CoR values estimated for all the 36 free-rocking tests with pertinent values from the 

literature [20,26,30,31,34,36,41–46] and Housner’s model of Eq. (6) [13]. 
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either due to the violation of the assumption of elastic impact behind Eq. (6) (i.e. no plastic 

deformation occurs at the surface asperities) or due to the presence of three-dimensional 

motion. Furthermore, the experimental results show a higher scatter for lower aspect ratios, 

with Eq. (6) providing a lower bound estimation. One potential explanation for this 

divergence has been provided by previous theoretical research [26–29] that highlighted that 

the impulsive forces during impact might not be concentrated solely at the corner pivot points. 

Nonetheless, the experimental CoR outcomes of this work lie within the scatter of the existing 

literature results for lower aspect ratios, while they provide novel experimental indications for 

higher aspect ratios, currently lacking from literature. 

5 CONCLUSIONS 

This paper presents an experimental characterisation of the free-rocking response of free-

standing limestone blocks. The experimental campaign includes the investigation of 36 

blocks, grouped into 12 aspect ratios (i.e. from 4 to 15) with three blocks for each group. 

Special attention is given to the energy dissipation mechanism at impacts, which is quantified 

via the coefficient of restitution (CoR), while the three-dimensional response, which is 

captured by a four-camera digital image correlation system, is also investigated. 

The time history response of a representative test is firstly introduced and thoroughly 

discussed. The results show an oscillatory free-rocking behaviour, featured by modest 

asymmetry between the positive and negative rotations. Such an aspect is attributed to several 

sources of imperfection, which, however, are found to be of negligible interest given the very 

close resemblance between the nominal and experimental geometrical parameters, i.e. p  and 

 . Overall, the planar rocking rotation xx  dominates the response compared to the other 

rotations ( yy , zz ), reinforcing the common assumption of planar rocking response. 

Furthermore, particular emphasis is given to the experimental estimation of the energy 

losses during free-rocking motion through quantification of the CoR. The CoR values of a 

representative test appear to gradually decrease over time characterised by scattered values for 

small angular velocities − in contrast with Housner’s assumption of constant CoR throughout 

the response time history. Finally, a comprehensive comparison is made among the CoR 

values extracted from all the 36 free-rocking tests conducted herein, the experimental results 

gathered from the literature, and the theoretical CoR of Housner’s model. In general, the 

experimentally estimated CoR values follow the trend of the theoretical Housner’s model 

prediction. Specifically, the experimental results verify the high scatter of the CoR values 

observed in the literature for lower aspect ratios, while the CoR is underestimated for higher 

aspect ratios. Nevertheless, the results shown herein are part of a wider experimental 

investigation currently in progress aiming to provide a deeper insight into the estimation of 

the energy dissipation throughout the response time history and the complex nonlinear 

rocking phenomena. 
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